Fully Metal-Coated Scanning Near-Field Optical Microscopy Probes with Spiral Corrugations for Superfocusing under Arbitrarily Oriented Linearly Polarised Excitation
نویسندگان
چکیده
We study the effect of a spiral corrugation on the outer surface of a fully metal-coated scanning near-field optical microscopy (SNOM) probe using the finite element method. The introduction of a novel form of asymmetry, devoid of any preferential spatial direction and covering the whole angular range of the originally axisymmetric tip, allows attaining strong field localization for a linearly polarised mode with arbitrary orientation. Compared to previously proposed asymmetric structures which require linearly polarised excitation properly oriented with respect to the asymmetry, such a configuration enables significant simplification in mode injection. In fact, not only is the need for the delicate procedure to generate radially polarised beams overcome, but also the relative alignment between the linearly polarised beam and the tip modification is no longer critical.
منابع مشابه
Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips.
We propose a new configuration for a fully metal coated scanning near field (SNOM) probe based on asymmetric corrugations in the metal coating. The variation in the metal surface induces coupling mechanisms leading to the creation of a localized hot spot under linearly polarized excitation. Field localization is an effect of paramount importance for resolution but cannot be achieved with standa...
متن کاملAnalysis of mode coupling due to spherical defects in ideal fully metal-coated scanning near-field optical microscopy probes.
We investigate the effect of defects in the metal-coating layer of a scanning near-field optical microscopy (SNOM) probe on the coupling of polarization modes using rigorous electromagnetic modeling tools. Because of practical limitations, we study an ensemble of simple defects to identify important trends and then extrapolate these results to more realistic structures. We find that a probe wit...
متن کاملConcentrator of magnetic field of light
In the recent decade metamaterials with magnetic permeability different than unity and unusual response to the magnetic field of incident light have been intensively explored. Existence of magnetic artificial materials created an interest in a scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of those metamaterials. We present a method o...
متن کاملSuperfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method.
We compare single- and double-sided excitation methods of adiabatic surface plasmon polariton (SPP) wave superfocusing for scattering-type metallic near-field scanning optical microscopy (s-NSOM). Using the results of full 3D finite difference time domain analyses, the differences in field enhancement factors are explained and reveal the mode selectivity of a conical NSOM tip for adiabatic SPP ...
متن کاملSPECIAL TOPIC: NEAR-FIELD MICROSCOPY AND SPECTROSCOPY Scanning near-field optical microscopy with aperture probes: Fundamentals and applications
In this review we describe fundamentals of scanning near-field optical microscopy with aperture probes. After the discussion of instrumentation and probe fabrication, aspects of light propagation in metal-coated, tapered optical fibers are considered. This includes transmission properties and field distributions in the vicinity of subwavelength apertures. Furthermore, the near-field optical ima...
متن کامل